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I. INTRODUCTION

1.1 Summary

This research project is designed to apply artificial intelligence

technology including expert systems, dynamic interface of neural

networks, and hypertext to construct an expert system developer.

The developer environment is specifically suited to building expert

systems which monitor the performance of ground support equipment

for propulsion systems and testing facilities. Monitoring data

will be acquired on-line through a set of measurement sensors. A

dynamic database will be generated by conventional data processing

techniques and/or a neural network interface module. The expert

system developer, through the use of a graphics interface and a

rule network, will be transparent to the user during rule

constructing and data scanning of the knowledge base. The project

will result in a software system that allows its user to build

specific _monitoring type'' expert systems which monitor various

equipments used for propulsion systems or ground testing facilities

and accrues system performance information in a dynamic knowledge

base. The resulting expert system developer at the end of the

project has great potential for improving productivity in the

construction of monitoring expert systems.

The specific area which was chosen as an example to demonstrate and

develop the general expert system developer is Compressor Stall

Monitoring system. This resulted sample monitoring expert system

can be implemented for its own usage.

1.2. Technical Objective

The objective of this research project is to design and construct

an Expert System Developer (or shell) specifically for building

equipment monitoring expert systems. Users can employ the

Developer to build an expert system in which the knowledge base

links directly to processed sensor processing through conventional

techniques and neural networks.

The objectives of Phase I are to design the architecture of the
expert system, to identify the appropriate areas, and to implement

acquired data processing methods including conventional and neural

networks algorithms.

In Phase I-Extension, the construction of a prototype Expert System

is to be initiated which links the data processing facility

constructed in Phase I to the knowledge base. A system executive

is to be built to manage all the elements as well as to feed the

output of conventional pattern recognition algorithm and neural

network to the expert system. The prototype expert system should
be demonstrated to show its feasibility.



2. PHASE I RESULTS

The topic of stall monitoring of the AEDC 16-Foot

Transonic/Supersonic (16T/S) compressor has been identified as the

specific area to be studied for the future construction of expert

systems developer. The architecture of the expert system

development environment has been designed. The neural networks

model and conventional pattern recognition paradigm for

classification have been investigated and selected. In Phase I-

Extension, a prototype expert system for the purpose of

demonstration has been implemented on the PC/MS-DOS platform

successfully using the 16T/S compressor data.

2.1. Topic Identification

In order to create an Expert System Developer, it has to start to

construct specific expert systems of some selected typical topics.

In the area of test facility operation, the continuous monitoring

system is mostly concerned either the performance or the mechanical

vibration of the rotating machinery. Thus, the following two

specific areas which are the similar type problems existing at

NASA/ARC and AEDC/AF have been considered to be investigated.

2.1.1. Compressor Stall Monitoring

The stall monitoring for the compressor in the AEDC 16-Foot

Transonic�Supersonic (16T/S) wind tunnel was considered as the

first candidate of the selections. The primary monitoring data are

based on the time traces of rotor blade stresses during the

operation of 16T/S compressors. The sensors data are recorded in

the Compressor Monitoring System disk records and Compressor

Monitoring Room oscillograph traces as shown in Figure I. An

early stall warning and detection expert system is intended to be

constructed utilizing these time traces data and other auxiliary

facility parameters.

2.1.2. Vibration Analysis for Rotating Equipment

The Vibration Analysis for Rotating Machinery in the Engine Test
Facilities at AEDC was considered as the second candidate of the

selections. The system should improve maintenance program based

on machinery condition as diagnosed by vibration analysis. The

ultimate goal is to reduce the dependence on specialists in

vibration analysis and to transfer the first level of diagnosis of

problems to plant personnel.

The topic of stall monitoring of the 16T/S compressor has been

selected to study first, because the format of the data and the

support from domain experts are readily available for immediate

usage. These are the critical issues to justify the initiation of

this study. The area of the vibration analysis for rotating

machinery in the Engine Test Facilities at AEDC was deferred for

the future application.



2.2. Monitoring Expert System Architecture

A monitoring expert system architecture has been designed

consisting of three major subsystems: knowledge-based diagnostic

subsystem, neural network subsystem, and conventional algorithm

data analysis subsystem. Figure 2 shows the relations between

these subsystems.

Sensor signals usually require some type of preprocessing such as

digital-to-analog conversion and filtering before they are

submitted to data analysis and feature extraction.

The conventional data analysis subsystem utilizes conventional

frequency spectrum, waveform and statistical techniques for data

and pattern recognition analysis. This part is comprised largely

of well established engineering analysis techniques. Results of

data analysis are applied to the knowledge-based subsystem which is

responsible for symbolic reasoning of the diagnostic process.

The neural network subsystem extracts useful features and

classifies data patterns. Neural networks can be trained by

examples and are more tolerant to noise. Such networks should be

used in conjunction with conventional techniques to enhance the

problem solving capability.

The knowledge-based subsystem employs heuristic knowledge such as

rules acquired from domain experts for problem solving.

2.3. Testing Data Acquisition and Process

The primary monitoring data are based on the time traces of rotor

blade stresses during the operation of 16T/S compressor. The data
of Normal run for rotors and stators of Compressor C-I of 16T at

AEDC were recorded for various flow conditions. The flow Mach

Number covered includes 0.6, 0.9, and 1.2. The original data from

stress sensors were recorded on the magnetic tape in the analog

format. The Rotor stress data include sensors AI3 (for Rotor A and

sensor #13), AI7, BI, B2, C16, and C17. The Stator stress data
include sensors SI, $2, and $4. The rotor and stator locations of

Compressor C-I are shown in Figure 3.

The analog data were converted to the digital format by a

commercial program named STAR System (Ref. i) and the spectrum

analysis in frequency domain was also carried out by the STAR

system. With the output binary data by STAR, a program for data

reading and plotting was implemented on the PC. The resulted

typical frequency spectrum data for AI3 and C17 at Mach Number 0.6
are shown in Figure 4. More than 50 sets of digital data of

amplitude vs. frequency for each sensor were converted for

utilizing in the techniques of Neural Network and Pattern

Recognition.
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2.4. Simulator for Compressor Rotor/Stator Stress Data

For the rule-based expert system as well as neural network process,

it is required to acquire sufficient data samples unde_ normal and

abnormal operating conditions, specially under the stall
conditions. Since the most operation of 16T/S compressor is under

normal condition, the stress data for the normal condition are

relatively easy to be acquired. On the other hand, the data under
stall condition are very limited. It is not advisable to force the

compressor to enter stall situation to acquire such data. The
alternative is to create a numerical Simulator which may provide

those stall dynamic stress data. It is apparent that this

simulator becomes necessary to generate such stall conditions data
which otherwise would not be available. Therefore, the task to

built a Simulator to produce the signals of dynamic stress data was

completed in this phase.

The Simulator is basically the superposition of several

sinusoidal, for example, sine waves form at various amplitudes,

frequencies, and phase angles. Amplitudes (coefficients),

frequencies and phase angles of sine waves are determined from the

actual analog spectrum or, if necessary, from expert's drawing.
A Fortran code of fast Fourier transform algorithm has been adopted

from the existing subroutine implemented for the simulator running

on an IBM-PC. The first test case is the Compressor Cl at AEDC for

the rotor's ''Normal'' and _Rotating Stall'' operation conditions.

The results are very satisfactory. The rotating stall is based upon

domain expert description to simulate the input data.

Another method to simulate rotational stall data has also been

developed. The simulator starts from the Rotor Normal data and
then incorporates inputs symptoms of rotational stall which are

supplied by "domain expert". The typical Simulated results are

shown in Figure 5. These simulated data have been used to develop

the expert system until the real test data are obtained in the
future.

2.5. Neural Network Models for Classificatlon

2.5.1 Evaluation of Neural Network Software

The neural network software evaluated was the NeuralWorks from

NeuralWare, Inc (Ref. 2). This software package seems to be quite

appropriate for the project needs. First, it runs on several

platforms ranging from PC, Macintosh to Sun workstation to even
N-Cube parallel computer with the same network specifications.

Networks can be constructed using either the InstaNet facility or
the Network Editor. Over one dozen well known networks such as

Perceptron, Hopfield, Back-Propagation, and BSB are available as
standard networks in InstaNet to facilitate quick prototyping.

Users can define any customized networks using Network Editor. One

can define the specific processing elements (PE) including transfer

function and learning rule. Layer is made of processing elements,

and network is made of layers and connections. Control strategy can

be specified for the entire network for both learning and recall.
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Input/output can be done through either keyboard or file; file I/O
will be more useful for the present application. The entire system
of NeuralWorks is menu-driven, interactive and has plenty of
graphic supports. It is rather versatile, powerful and
easy-to-use. The overall evaluation about NeuralWorks is very good,
and the decision has been made to use this package for the project.

2.5.2 Network Architecture

A three-layer back-propagation (BP) network (Ref. 3) has been
selected for classification of air compressor operation conditions.
The multi-layer BP networks have been studied extensively and
widely used for hetero-association and pattern classification.
Multi-layer networks are able to classify non-linearly separable
classes. Back-propagation is the technique selected to solve the
present problem. That is, the errors due to misclassification will
be properly distributed to and rectified by all the connecting
weights. In the present case, a three-layer, input layer, hidden
layer and output layer, network is utilized as illustrated in
Figure 6. The input layer takes the peak amplitude of stress
frequency spectrum as feature inputs and sends them to the hidden
layer. There are presently ii nodes at the input layer
representing ii major peaks of frequency spectrum, 3 nodes at the
output layer representing normal, near stall and deep stall
condition of the air compressor, and 6 nodes at the hidden layer.
Using NeuralWorks, the number of nodes, configuration and other

parameters can be changed rather easily. The data from Row B of C3

Rotor Blade were supplied by Calspan/AEDC and chosen to investigate
the BP since the data are available for three distinguished

conditions--normal, near stall and deep stall.

2.5.3 Learning and Recall Procedure

Learning: Three frequency spectra for normal, near stall and deep
stall conditions from Row B of C3 Rotor Blade were used for

training the neural network. The network converged very quickly

and the network classified the original training patterns

correctly. The input/output file was set up as follows where i

stands for input and d stands for desired output:

Training data for C3 Rotor Blade Row B.

actual stress frequency spectra.

Data were taken from

i

d

0. 3800 0. 4500 O. 4800 0. 5300 0. 3800 0. 3600

O. 1600 O. 1500 O. 3500 0. 0300

1.0 0.0 0.0

0.2200

i

d

0.4700 0.4700 0.3700 0.4300 0.2800 0.4000

0. 2400 0. 2700 O. 4600 O. 0800
0.0 1.0 0.0

0.3100

i

d

0. 1800 0. 1400 0. 0300 0. 1200 0. 0050 0. 1400

0. 0050 O. 0050 0. 5500 0. 0800

0.0 0.0 1.0

0.0050
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Recall: Since there was no additional data for testing the neural
network, some test data based on the original training data are
generated. A 5% random noise with Gaussian distribution was added
to the original normal, near stall and deep stall data. Three test
samples are generated for each group. All nine test data were
classified correctly. If the original training data are good
representative of the underlying distribution, then this test shows
quite excellent performance. The graphical display for the
results shown in Figure 7 represents three layers: input, hidden
and output layers. The size of rectangular symbol represents the
magnitude of the value of each node. The output layer Symbol 19
indicates that this result is Normal run condition given in Figure
7a. The results of near stall and deep stall conditions are shown
in Figures 7b and 7c.

Rotor Cl for both Normal and Rotating stalling conditions including
data of Row A and Row C will be investigated in the next Phase.

2.6. Pattern Recognition Algorithm

The pattern recognition paradigm (Ref. 4) divides the procedure

into two phases: training and test. The basic concept of the

present pattern recognition paradigm is to recognize the feature
vector and apply an algorithm called Nearest Neighborhood. The
feature vector is a set of measurements which are utilized to

condense the description of a set of properties into a Euclidean

feature space of multi-dimensions. Each point in feature space

represents a value for the feature vector applied to a different

category. Ordinarily, during a training phase, feature vectors
from known sample data are used to partition feature space into

regions representing the different classes. During a test phase the
feature space partition are used to classify feature vectors from

unknown data.

2.6.1 Minimum-Distance Pattern Classification Method

First, all feature vectors are normalized to eliminate the absolute

magnitude of each signal. The class-average vector is calculated
from all feature vectors of a single class. Figure 8 shows three

classes A, C and R in a two-dimensional (two features) hyperplane
domain. The classification of the signal is based on the minimum

distance from the signal vector to each class-average vector center

(one center for each class). The test of each data set will
examine the distance from the data signal vector to the center of

each pattern class. The data signal will be classified as that

specific class which the minimum distance occurs between the data

signal and one of the class centers.

2.6.2 Clustering Method

The basic idea about the clustering method is that the given

signals can be partitioned into multiple cluster domains. For each

cluster, there is a cluster center (average of all the data in that



cluster). In each class, there are several clusters and each of
them has a cluster center. The corresponding clusters centers
become representatives of them. The determination of a given
signal belonging to certain class is based upon the signal's
relations to the multiple cluster's centers. The clustering method
is preferred over the Minimum-Distance method (one center for each
class), as mentioned in the previous section, of a single cluster
in some cases• If the signals are evenly distributed over their
regions, the two method are the same. But if the distributions are
not perfectly even, one center cannot adequately represent its
overall characteristics.

2.6.3 Cluster-seeking Algorithm

The Maximim (Maximum-Minimum)-distance algorithm is applied for

cluster-seeking. This method is a heuristic procedure based upon

the Euclidean distance concept. The algorithm consists of the

following steps:
I. Arbitrarily choose a signal to be the center of the first

cluster.

• From the remaining signals, find that one whose distance to
the first cluster is farthest and assign it to be the

center of the second cluster•

• For each remaining signals, calculate the distances to each
center and store the minimum• Among all the minimum

distances, choose the maximum. If the maximum (of the

minimum group) is greater than one-half of the (largest)
distances between centers, that signal becomes another

center and then perform (3) again; otherwise the algorithm
terminates.

After having the centers, each remaining signal is assigned to its

nearest cluster center. To obtain a representative cluster center

for each group, the mean of each cluster signals is designated as
the new cluster center.

2.6.4 Cluster-Belonging Criteria

The Maximim (Maximum-Minimum)-distance algorithm for the

cluster-seeking described above has been applied to the data sets

of (A1306, R1306) and (C1706, R1306). Data of A1306 and C1706 were
obtained from Row-A blade-13 and Row-C blade-17 at Mach Number 0.6

Normal running condition, respectively• Data of R1306 are
Simulated Rotational stall condition at Mach Number 0.6. Four

clusters (therefore four cluster centers) for A1306 sets of signals
were obtained and five clusters for R1306. For a given signal, two

cluster-belonging criteria have established as follows:

i. Among all (total nine for A1306 and R1306) distances for a

signal to cluster centers such as (A1306, R1306), the
minimum one decides the class which it belongs to (

One-Minimum Nearest Neighbor).
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• The signal nearer to the distance average of cluster center

belongs to the corresponding class (Distance to Cluster

Centers Average).

2.6.5 Results of (A1306 vs R1306) and (C1706 vs R1306):

The above cluster-belonging criteria are applied to the

classification of (A1306 vs R1306) and (C1706 vs R1306). The

following results obtained are listed in Table I. Criterion-I

(One-Minimum Nearest Neighbor) can get better overall results.

Criterion-2 (Distance to Cluster Centers Average) yields reasonable

good results. But there is no perfect way among the above two
criteria to classify the signals. For the purpose of comparison,
the Minimum-distance method of non-clustering method (one circle)

also is applied to the present case. The results is very close to
One-Minimum criterion.

In general, the experience has shown that any reasonable methods

will work for a good physical features. It is critical to select

a good representative features of a physical problem. The feature
vector selected for the current problem is the same as those in the

neural network: the peaks of amplitude at various frequencies.

Similarly the results should be obtained as expected.
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3. PHASE I-EXTENSION RESULTS

3.1 Prototype Monitoring Expert systems

A prototype Monitoring Expert System has been implemented on the
IBM PC platform. The basic elements of this system are shown in

Figure 9. A spectrum analyzer for fast Fourier transform is used

to process the sensor data from time-domain to frequency-domain by

applying a commercial program, STAR. A feature extraction has

developed in Quick Basic code to extract the characteristics from
the resulted spectrum data. The test-data sets are then classified

by a commercial neural networks shell, NeuralWorks, or by a

conventional pattern recognition based on the weights and database

template which were pre-trained in neural networks and pattern

recognition from the data feature characteristics. The knowledge
base and inference engine are contained in a commercial expert

system shell, Level5 (Ref. 5). The function of the expert system

is to supply advice and relevant information for the end-user to
correct the problem. A graphic display program provides the user
to examine the data characteristics.

A system executive (user interface) has been constructed to manage

all the key elements including data processing, conventional

pattern analysis, Neural Network, expert system, etc. This
executive is built on a Hypertext software, Guide 3.0 (Ref. 6),

which has excellent display ability and a high level programming

language. From the Main-Menu shown in Fig. I0, the user can
directly launch (execute) the desired item by clicking on its

image. The inner link will follow the pre-designed order to

complete the specific task. A brief description of each task in

Fig. ii is given below.

A click at the ''Data input'' will bring a dialogue box to ask for

the input test-data file name and then open the specified file for

testing. The '_Graphical Display'' will display the plot of the
test-data set in the frequency domain when the user requests to
examine it. The '_Feature extraction'' extracts the critical peak

amplitudes of stress spectrum of this data set. The _Conventional

data/pattern analysis'' and _Neural Network'' are utilized to
test and classify the test-data by calling the conventional pattern

recognition program and NeuralWork respectively . Finally, an
expert system can be called in to display the analyzed result, give

warning if the compressor is near stall or already stall, and

provide advice to the user to correct the problem. The expert

system directly reads the output from either the Neural Network or
the conventional pattern recognition program whichever the user has

selected for the last running. Text and graphical information will

be stored in hypertext format and can be retrieved easily.

The demonstration expert system which links output from the Neural
Network or the conventional pattern recognition has been

constructed on the limited knowledge base in the present time to

check the architecture of the proposed expert system. A list of

software is included in Appendix A. The codes of the software on

a 51/4 diskette are delivered to the technical officer only.
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3.2 Automatic Operation Mode

The above described operation is designed for users having the

complete control to select any specific task to show the

feasibility of the integration. An automatic operation of these
tasks will be added later. The automatic mode will ask the user

necessary questions such as the input test-data file name, the
test-data classification method at the beginning of the operation

and then execute the tasks continuously without users interaction.

The result of monitoring data classification and some

recommendation or advice will display in the text and graphic
format at the end of the sessions. This automatic operation mode is

being planned to be implemented in the next Phase.
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4. CONCLUDING REMARKS AND FUTURE WORK

A prototype neural network based expert system has been implemented
in commercial tools for the demonstration purpose. The proper
selection or combination of Neural Networks and conventional

pattern recognition could result in optimal data processing

procedures for the expert system.

The acquisition and refinement of the knowledge base for the expert

system are required to in the next phase. Furthermore, the
additional flow variables of the compressor such as the flow Mach

number, stagnation pressure, stagnation temperature as well as the
sensor data should be input directly in the expert system's data

base to support the compressor condition monitoring and diagnoses.

In the future work, it appears feasible and beneficial to develop

a generic monitoring expert system which would be extended to an

expert system developing environment and which, in turn, would be
used for constructing other specific expert systems.
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TABLE I

A1306 vs. R1306

The initial point is the one of un-normalized farthest point from the origin.

(The clustering approach finds 4 groups in A1306, 5 groups in R1306.)

The radius of A1306 is 0.868789.

The radius of R1306 is 0.969805.

The distance between two circles is 0.322254.

A1306

R1306

One minimum Distance to

Nearest Neighbor Cluster Centers Average

0 (100%) 0 (100%)

-1 (98%) -5 (90%)

Remark: the minus means mlsclassification number.

the percentage in the bracket means correct rate.

C1706 vs. R1306

The initial point is the one of un-normalized farthest point from the origin.

(The clustering approach finds 5 groups in C1706.)

The radius of C1706 is 0.867510.

The radius of R1306 is 1.036084.

The distance between two circles is 0.433841.

C1706

R1306

One minimum Distance to

Nearest Neighbor Cluster Centers Average

0 (100%) -4 (93%)

-2 (96%) -4 (92%)

Ilcmark: the minus means misclassification number.

the percentage in the bracket means correct rate.
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Figure 5. Simulated frequency spectrum data for rotational

stall.
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Figure 6. A Neural Network model with full connection.
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(b). near stall condition

Figure 7. A
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(c). deep stall condition

three-layer BP Network for rotor
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Figure 8. Pattern classification regions.
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Figure 9.
Architecture of the prototype Compressor Stall
Monitoring Expert System.
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" _f;gl
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Figure I0. Main-Menu of the demonstration prototype

Compressor Monitoring Expert System.

Main Menu

• l InputSensor-Data I I Numerical Display _ Lilt.corn

• I Feature Extraction

• I Neural Networks _ NeuralWork / Nwe.exe

• IConventional Data/Pattern

• lExpertSystem I -- (I.,.$/eompmu.kb, ,)

I Graphical Display _ plot.,x, )

Text / Graphic Display
* Classification
* Recommendation

Figure ii. Integration of various tasks in the prototype

Expert System.
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Dis Imply Fo[mat Font Make

C:tAEDC-COM COMPRESS.GUI

DANGER !!

'Window

Stall !!! Stall !!!

Corrective Action:
* Unload stator blades, drive in more positive ('+')

direction.

= Drive nozzle towards lower contour numbers.

" If above fails to clear stall, Emergency Shutdown !!!

Ft =HELP

Figure 12. Graphic display for stall case.
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APPENDIX A

LIST OF SOFTWARE

COMPRESS GUI 68610 02-01-91

GRAPHICS <DIR> 01-16-91

PLOT1 BAS 7555 01-18-91

PLOT1 EXE 20760 01-18-91

PLOT2 BAS 8420 01-18-91

PLOT2 EXE 22792 01-18-91

EGADUMP EXE 1067 06-03-89

(5 files)

FEATURE <DIR>

AMPLITU9 BAS

AMPLITUD EXE

AMPLITUD BAS

FREQ DAT
OUTPUT

TESTFILE

AMPLITU9 EXE

(7 files)

NEURAL <DIR>

BACKPROP NNT

BKPSTD INS

BKPSTDPR INS

C3RBRB NNA

C3RBRB NNB

C3RBRB NND

C3RBRB NNR

DEFAULT NNT

DISPLAY DG

NWE EXE

NWORKS HLP

NWORKS MSG

ULOTUS EXE

USERIO EXE

VGAII DG

VGAI2 DG

CALL BAT

CONVERT BAS

CONVERT EXE

(19 files)

PATTERN <DIR>

COMPTEST EXE

AI306N21 ASC

AI306N31 ASC

C1706N2 ASC

C1706NI ASC

C1706N3 ASC

AI306RII ASC

AI306R31 ASC

AI306R21 ASC

AI306R01 ASC

AI306R61 ASC

AI306R71 ASC

TRACE DAT

CONVERT BAS

CONVERT EXE

PATTERN BAT

COMPTEST C

(17 Files)

01-16-91

3754 01-18-91

39788 01-18-91

3015 01-18-91

99 07-16-90

477 02-01-91

54 02-01-91

41122 01-18-91

01-17-91

1538 10-16-89

3717 10-16-89

3886 10-16-89

430 01-18-91

191 09-13-90

4716 01-16-91

3777 02-01-91

240 10-16-89

16520 10-16-89

279511 12-12-89

111894 10-16-89

16763 10-16-89

59492 10-16-89

16148 10-16-89

7772 10-16-89

8528 10-16-89

24 01-22-91

768 01-18-91

37468 01-18-91

01-28-91

38502 01-29-91

4844 08-22-90

4844 08-22-90

4835 01-27-91

4819 01-27-91

4826 01-27-91

4851 08-23-90

4846 08-23-90

4843 08-23-90

4855 08-23-90

4833 08-23-90

4837 08-23-90

432 02-01-91

768 01-28-91

37468 01-28-91

36 01-28-91

8888 01-29-91
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L5-EXPER <DIR>

RETURN DAT

COMPRESS KNB

COMPRESS PRL

RUNL5 BAT

INPUT DAT

(5 Files)

TESTDATA <DIR>

A1306-10 FRF

A1306-II FRF

A1306-12 FRF

A1306-13 FRF

A1306-14 FRF

A1306-15 FRF

A1306-16 FRF

A1306-17 FRF

A1306-18 FRF

A1306-19 FRF

A1306-$1 FRF

A1306-$2 FRF

A1306-$3 FRF

A1306-$4 FRF

C1706-I0 FRF

C1706-II FRF

C1706-12 FRF

C1706-13 FRF

C1706-14 FRF

C1706-15 FRF

C1706-16 FRF

C1706-17 FRF

C1706-18 FRF

C1706-19 FRF

(24 Files)

01-15-91

5 02-01-91

1152 01-18-91

1044 01-18-91

62 01-15-91

39 02-01-91

01-17-91

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 06-05-90

3860 05-31-90

3860 05-31-90

3860 05-31-90

3860 05-31-90

3860 05-31-90

3860 05-31-90

3860 05-31-90

3860 05-31-90

3860 05-31-90
3860 05-31-90


